|
SparkApi.py文件
[Python] 纯文本查看 复制代码 import _thread as thread
import base64
import datetime
import hashlib
import hmac
import json
from urllib.parse import urlparse
import ssl
from datetime import datetime
from time import mktime
from urllib.parse import urlencode
from wsgiref.handlers import format_date_time
import websocket # 使用websocket_client
answer = ""
class Ws_Param(object):
# 初始化
def __init__(self, APPID, APIKey, APISecret, Spark_url):
self.APPID = APPID
self.APIKey = APIKey
self.APISecret = APISecret
self.host = urlparse(Spark_url).netloc
self.path = urlparse(Spark_url).path
self.Spark_url = Spark_url
# 生成url
def create_url(self):
# 生成RFC1123格式的时间戳
now = datetime.now()
date = format_date_time(mktime(now.timetuple()))
# 拼接字符串
signature_origin = "host: " + self.host + "\n"
signature_origin += "date: " + date + "\n"
signature_origin += "GET " + self.path + " HTTP/1.1"
# 进行hmac-sha256进行加密
signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'),
digestmod=hashlib.sha256).digest()
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8')
authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"'
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')
# 将请求的鉴权参数组合为字典
v = {
"authorization": authorization,
"date": date,
"host": self.host
}
# 拼接鉴权参数,生成url
url = self.Spark_url + '?' + urlencode(v)
# 此处打印出建立连接时候的url,参考本demo的时候可取消上方打印的注释,比对相同参数时生成的url与自己代码生成的url是否一致
return url
# 收到websocket错误的处理
def on_error(ws, error):
print("### error:", error)
# 收到websocket关闭的处理
def on_close(ws,one,two):
print(" ")
# 收到websocket连接建立的处理
def on_open(ws):
thread.start_new_thread(run, (ws,))
def run(ws, *args):
data = json.dumps(gen_params(appid=ws.appid, domain= ws.domain,question=ws.question))
ws.send(data)
# 收到websocket消息的处理
def on_message(ws, message):
# print(message)
data = json.loads(message)
code = data['header']['code']
if code != 0:
print(f'请求错误: {code}, {data}')
ws.close()
else:
choices = data["payload"]["choices"]
status = choices["status"]
content = choices["text"][0]["content"]
print(content,end ="")
global answer
answer += content
# print(1)
if status == 2:
ws.close()
def gen_params(appid, domain,question):
"""
通过appid和用户的提问来生成请参数
"""
data = {
"header": {
"app_id": appid,
"uid": "1234"
},
"parameter": {
"chat": {
"domain": domain,
"random_threshold": 0.5,
"max_tokens": 2048,
"auditing": "default"
}
},
"payload": {
"message": {
"text": question
}
}
}
return data
def main(appid, api_key, api_secret, Spark_url,domain, question):
# print("星火:")
wsParam = Ws_Param(appid, api_key, api_secret, Spark_url)
websocket.enableTrace(False)
wsUrl = wsParam.create_url()
ws = websocket.WebSocketApp(wsUrl, on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open)
ws.appid = appid
ws.question = question
ws.domain = domain
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
test.py文件
[Python] 纯文本查看 复制代码 import streamlit as st
from streamlit_chat import message
import SparkApi
# 以下密钥信息从控制台获取
appid = "APPID 信息" # 填写控制台中获取的 APPID 信息
api_secret = "APISecret 信息" # 填写控制台中获取的 APISecret 信息
api_key = " APIKey 信息" # 填写控制台中获取的 APIKey 信息
# 用于配置大模型版本,默认“general/generalv2”
# domain = "general" # v1.5版本
domain = "generalv2" # v2.0版本
# 云端环境的服务地址
# Spark_url = "ws://spark-api.xf-yun.com/v1.1/chat" # v1.5环境的地址
Spark_url = "ws://spark-api.xf-yun.com/v2.1/chat" # v2.0环境的地址
text = [] # 用于存储对话内容的列表
# 定义一个函数,用于获取对话内容
def getText(role, content):
jsoncon = {}
jsoncon["role"] = role
jsoncon["content"] = content
text.append(jsoncon)
return text
# 定义一个函数,用于获取对话内容的长度
def getlength(text):
length = 0
for content in text:
temp = content["content"]
leng = len(temp)
length += leng
return length
# 定义一个函数,用于检查对话内容的长度,如果超过8000,则删除第一个元素
def checklen(text):
while getlength(text) > 8000:
del text[0]
return text
# 定义一个函数,用于初始化对话历史和生成的响应列表
if __name__ == '__main__':
# 在 Streamlit 网页上显示欢迎文本
st.markdown("#### 我是易语言大模型,我可以回答您的任何问题!")
# 初始化对话历史和生成的响应列表
if 'generated' not in st.session_state:
st.session_state['generated'] = []
if 'past' not in st.session_state:
st.session_state['past'] = []
# 获取用户输入的问题
user_input = st.text_input("请输入您的问题:", key='input')
if user_input:
# 构造用户输入的对话信息
question = checklen(getText("user", user_input))
# 调用 SparkApi 中的函数进行问题回答
SparkApi.answer = ""
print("星火:", end="")
SparkApi.main(appid, api_key, api_secret, Spark_url, domain, question)
output = getText("assistant", SparkApi.answer)
# 将用户输入和生成的响应添加到对话历史和生成的响应列表中
st.session_state['past'].append(user_input)
st.session_state['generated'].append(str(output[1]['content']))
if st.session_state['generated']:
# 在网页上显示对话历史和生成的响应
for i in range(len(st.session_state['generated']) - 1, -1, -1):
message(st.session_state["generated"], key=str(i))
message(st.session_state['past'], is_user=True, key=str(i) + '_user')
|
|