|
本帖最后由 z13228604287 于 2022-8-8 15:18 编辑
YOLACT:https://github.com/dbolya/yolact
变量名 | 类 型 | 静态 | 数组 | 备 注 | 分割 | YOLACT | | | 预测图 | 多维矩阵类 | | |
分割. 初始化 (0.5, 0.5 )预测图 = 视觉_图像解码 ( #预测图, #读图_彩色 )分割. 检测 (预测图 )视觉_创建窗口 (“小白鼠”, #窗口_标准 )视觉_显示图像 (“小白鼠”, 预测图 )视觉_等待按键 (0 )视觉_销毁所有窗口 ()返回 (0 ) 窗口程序集名 | 保 留 | 保 留 | 备 注 | YOLACT, , 公开, You Only Look At CoefficienTs | | | | 变量名 | 类 型 | 数组 | 备 注 | 类_名 | 文本型 | 0 | BGR颜色数组 | 字节型 | 82,3 | 目标_尺寸 | 整数型 | | MEANS | 小数型 | 3 | STD | 小数型 | 3 | 置信_阈值 | 小数型 | | 抑制_阈值 | 小数型 | | 保存_顶边_k | 整数型 | | 转化率_ws | 整数型 | 5 | 转化率_hs | 整数型 | 5 | 纵横比 | 小数型 | 3 | scales | 小数型 | 5 | var | 小数型 | 4 | 掩码_h | 整数型 | | 掩码_w | 整数型 | | 数_预测框 | 整数型 | | 预测框 | 小数型 | 0 | DNN网络 | 网络类 | |
目标_尺寸 = 550 MEANS = { 123.68, 116.78, 103.94 }STD = { 58.4, 57.12, 57.38 }转化率_ws = { 69, 35, 18, 9, 5 }转化率_hs = { 69, 35, 18, 9, 5 }纵横比 = { 1, 0.5, 2 }scales = { 24, 48, 96, 192, 384 }var = { 0.1, 0.1, 0.2, 0.2 }掩码_h = 138 掩码_w = 138 类_名 = { “background”, “person”, “bicycle”, “car”, “motorcycle”, “airplane”, “bus”, “train”, “truck”, “boat”, “traffic light”, “fire hydrant”, “stop sign”, “parking meter”, “bench”, “bird”, “cat”, “dog”, “horse”, “sheep”, “cow”, “elephant”, “bear”, “zebra”, “giraffe”, “backpack”, “umbrella”, “handbag”, “tie”, “suitcase”, “frisbee”, “skis”, “snowboard”, “sports ball”, “kite”, “baseball bat”, “baseball glove”, “skateboard”, “surfboard”, “tennis racket”, “bottle”, “wine glass”, “cup”, “fork”, “knife”, “spoon”, “bowl”, “banana”, “apple”, “sandwich”, “orange”, “broccoli”, “carrot”, “hot dog”, “pizza”, “donut”, “cake”, “chair”, “couch”, “potted plant”, “bed”, “dining table”, “toilet”, “tv”, “laptop”, “mouse”, “remote”, “keyboard”, “cell phone”, “microwave”, “oven”, “toaster”, “sink”, “refrigerator”, “book”, “clock”, “vase”, “scissors”, “teddy bear”, “hair drier”, “toothbrush” }BGR颜色数组 [1 ] [1 ] = 56 BGR颜色数组 [1 ] [3 ] = 255 BGR颜色数组 [2 ] [1 ] = 226 BGR颜色数组 [2 ] [2 ] = 255 BGR颜色数组 [3 ] [2 ] = 94 BGR颜色数组 [3 ] [3 ] = 255 BGR颜色数组 [4 ] [2 ] = 37 BGR颜色数组 [4 ] [3 ] = 255 BGR颜色数组 [5 ] [2 ] = 255 BGR颜色数组 [5 ] [3 ] = 94 BGR颜色数组 [6 ] [1 ] = 255 BGR颜色数组 [6 ] [2 ] = 226 BGR颜色数组 [7 ] [2 ] = 18 BGR颜色数组 [7 ] [3 ] = 255 BGR颜色数组 [8 ] [1 ] = 255 BGR颜色数组 [8 ] [2 ] = 151 BGR颜色数组 [9 ] [1 ] = 170 BGR颜色数组 [9 ] [3 ] = 255 BGR颜色数组 [10 ] [2 ] = 255 BGR颜色数组 [10 ] [3 ] = 56 BGR颜色数组 [11 ] [1 ] = 255 BGR颜色数组 [11 ] [3 ] = 75 BGR颜色数组 [12 ] [2 ] = 75 BGR颜色数组 [12 ] [3 ] = 255 BGR颜色数组 [13 ] [2 ] = 255 BGR颜色数组 [13 ] [3 ] = 169 BGR颜色数组 [14 ] [1 ] = 255 BGR颜色数组 [14 ] [3 ] = 207 BGR颜色数组 [15 ] [1 ] = 75 BGR颜色数组 [15 ] [2 ] = 255 BGR颜色数组 [16 ] [1 ] = 207 BGR颜色数组 [17 ] [3 ] = 255 BGR颜色数组 [18 ] [1 ] = 37 BGR颜色数组 [18 ] [3 ] = 255 BGR颜色数组 [19 ] [2 ] = 207 BGR颜色数组 [19 ] [3 ] = 255 BGR颜色数组 [20 ] [1 ] = 94 BGR颜色数组 [20 ] [3 ] = 255 BGR颜色数组 [21 ] [2 ] = 255 BGR颜色数组 [21 ] [3 ] = 113 BGR颜色数组 [22 ] [1 ] = 255 BGR颜色数组 [22 ] [2 ] = 18 BGR颜色数组 [23 ] [1 ] = 255 BGR颜色数组 [23 ] [3 ] = 56 BGR颜色数组 [24 ] [1 ] = 18 BGR颜色数组 [24 ] [3 ] = 255 BGR颜色数组 [25 ] [2 ] = 255 BGR颜色数组 [25 ] [3 ] = 226 BGR颜色数组 [26 ] [1 ] = 170 BGR颜色数组 [26 ] [2 ] = 255 BGR颜色数组 [27 ] [1 ] = 255 BGR颜色数组 [27 ] [3 ] = 245 BGR颜色数组 [28 ] [1 ] = 151 BGR颜色数组 [28 ] [2 ] = 255 BGR颜色数组 [29 ] [1 ] = 132 BGR颜色数组 [29 ] [2 ] = 255 BGR颜色数组 [30 ] [1 ] = 75 BGR颜色数组 [30 ] [3 ] = 255 BGR颜色数组 [31 ] [1 ] = 151 BGR颜色数组 [31 ] [3 ] = 255 BGR颜色数组 [32 ] [2 ] = 151 BGR颜色数组 [32 ] [3 ] = 255 BGR颜色数组 [33 ] [1 ] = 132 BGR颜色数组 [33 ] [3 ] = 255 BGR颜色数组 [34 ] [2 ] = 255 BGR颜色数组 [34 ] [2 ] = 245 BGR颜色数组 [35 ] [1 ] = 255 BGR颜色数组 [35 ] [2 ] = 132 BGR颜色数组 [36 ] [1 ] = 226 BGR颜色数组 [36 ] [3 ] = 255 BGR颜色数组 [37 ] [1 ] = 255 BGR颜色数组 [37 ] [2 ] = 37 BGR颜色数组 [38 ] [1 ] = 207 BGR颜色数组 [38 ] [2 ] = 255 BGR颜色数组 [39 ] [2 ] = 255 BGR颜色数组 [39 ] [3 ] = 207 BGR颜色数组 [40 ] [1 ] = 94 BGR颜色数组 [40 ] [2 ] = 255 BGR颜色数组 [41 ] [2 ] = 226 BGR颜色数组 [41 ] [3 ] = 255 BGR颜色数组 [42 ] [1 ] = 56 BGR颜色数组 [42 ] [2 ] = 255 BGR颜色数组 [43 ] [1 ] = 255 BGR颜色数组 [43 ] [2 ] = 94 BGR颜色数组 [44 ] [1 ] = 255 BGR颜色数组 [44 ] [2 ] = 113 BGR颜色数组 [45 ] [2 ] = 132 BGR颜色数组 [45 ] [3 ] = 255 BGR颜色数组 [46 ] [1 ] = 255 BGR颜色数组 [46 ] [3 ] = 132 BGR颜色数组 [47 ] [1 ] = 255 BGR颜色数组 [47 ] [2 ] = 170 BGR颜色数组 [48 ] [1 ] = 255 BGR颜色数组 [48 ] [3 ] = 188 BGR颜色数组 [49 ] [1 ] = 113 BGR颜色数组 [49 ] [2 ] = 255 BGR颜色数组 [50 ] [1 ] = 245 BGR颜色数组 [50 ] [3 ] = 255 BGR颜色数组 [51 ] [1 ] = 113 BGR颜色数组 [51 ] [3 ] = 255 BGR颜色数组 [52 ] [1 ] = 255 BGR颜色数组 [52 ] [2 ] = 188 BGR颜色数组 [53 ] [2 ] = 113 BGR颜色数组 [53 ] [3 ] = 255 BGR颜色数组 [54 ] [1 ] = 255 BGR颜色数组 [55 ] [2 ] = 56 BGR颜色数组 [55 ] [3 ] = 255 BGR颜色数组 [56 ] [1 ] = 255 BGR颜色数组 [56 ] [3 ] = 113 BGR颜色数组 [57 ] [2 ] = 255 BGR颜色数组 [57 ] [3 ] = 188 BGR颜色数组 [58 ] [1 ] = 255 BGR颜色数组 [58 ] [3 ] = 94 BGR颜色数组 [59 ] [1 ] = 255 BGR颜色数组 [59 ] [3 ] = 18 BGR颜色数组 [60 ] [1 ] = 18 BGR颜色数组 [60 ] [2 ] = 255 BGR颜色数组 [61 ] [2 ] = 255 BGR颜色数组 [61 ] [3 ] = 132 BGR颜色数组 [62 ] [2 ] = 188 BGR颜色数组 [62 ] [3 ] = 255 BGR颜色数组 [63 ] [2 ] = 245 BGR颜色数组 [63 ] [3 ] = 255 BGR颜色数组 [64 ] [2 ] = 169 BGR颜色数组 [64 ] [3 ] = 255 BGR颜色数组 [65 ] [1 ] = 37 BGR颜色数组 [65 ] [2 ] = 255 BGR颜色数组 [66 ] [1 ] = 255 BGR颜色数组 [66 ] [3 ] = 151 BGR颜色数组 [67 ] [1 ] = 188 BGR颜色数组 [67 ] [3 ] = 255 BGR颜色数组 [68 ] [2 ] = 255 BGR颜色数组 [68 ] [3 ] = 37 BGR颜色数组 [69 ] [2 ] = 255 BGR颜色数组 [70 ] [1 ] = 255 BGR颜色数组 [70 ] [3 ] = 170 BGR颜色数组 [71 ] [1 ] = 255 BGR颜色数组 [71 ] [3 ] = 37 BGR颜色数组 [72 ] [1 ] = 255 BGR颜色数组 [72 ] [2 ] = 75 BGR颜色数组 [73 ] [3 ] = 255 BGR颜色数组 [74 ] [1 ] = 255 BGR颜色数组 [74 ] [2 ] = 207 BGR颜色数组 [75 ] [1 ] = 255 BGR颜色数组 [75 ] [3 ] = 226 BGR颜色数组 [76 ] [1 ] = 255 BGR颜色数组 [76 ] [1 ] = 245 BGR颜色数组 [77 ] [1 ] = 188 BGR颜色数组 [77 ] [2 ] = 255 BGR颜色数组 [78 ] [2 ] = 255 BGR颜色数组 [78 ] [3 ] = 18 BGR颜色数组 [79 ] [2 ] = 255 BGR颜色数组 [79 ] [3 ] = 75 BGR颜色数组 [80 ] [2 ] = 255 BGR颜色数组 [80 ] [3 ] = 151 BGR颜色数组 [81 ] [1 ] = 255 BGR颜色数组 [81 ] [2 ] = 56 BGR颜色数组 [82 ] [1 ] = 245 BGR颜色数组 [82 ] [2 ] = 255 |
初始化 | | | |
confThreshold | 小数型 | | | | nmsThreshold | 小数型 | | | | keep_top_ks | 整数型 | | | |
变量名 | 类 型 | 静态 | 数组 | 备 注 | p | 整数型 | | | conv_w | 整数型 | | | conv_h | 整数型 | | | scale | 小数型 | | | i | 整数型 | | | j | 整数型 | | | cx | 小数型 | | | cy | 小数型 | | | k | 整数型 | | | ar | 小数型 | | | w | 小数型 | | | h | 小数型 | | | arget_size | 小数型 | | | pb | 小数型指针类 | | | 如果真 (是否为空 (keep_top_ks )) keep_top_ks = 200 置信_阈值 = confThreshold抑制_阈值 = nmsThreshold 保存_顶边_k = keep_top_ks DNN网络 = 视觉_读取网络 (“C:\Users\hanyo\Desktop\yolact_base_54_800000.onnx”, , “”)计次循环首 (5, p )数_预测框 = 转化率_ws [p ] × 转化率_hs [p ] × 3 + 数_预测框 计次循环尾 ()重定义数组 (预测框, 假, 4 × 数_预测框 )pb.指针 = 取变量数据地址 (预测框 ) 计次循环首 (5, p )conv_w = 转化率_ws [p ]conv_h = 转化率_hs [p ]scale = scales [p ]变量循环首 (0, conv_h - 1, 1, i )变量循环首 (0, conv_w - 1, 1, j )cx = (j + 0.5 ) ÷ conv_w cy = (i + 0.5 ) ÷ conv_h 计次循环首 (3, k )ar = 纵横比 [k ]ar = 求平方根 (ar )w = scale × ar ÷ 目标_尺寸 h = scale ÷ ar ÷ 目标_尺寸 h = w pb. 写 (0, cx )pb. 写 (1, cy )pb. 写 (2, w )pb. 写 (3, h )pb. 偏移 (4 )计次循环尾 ()变量循环尾 ()变量循环尾 ()计次循环尾 ()变量名 | 类 型 | 静态 | 数组 | 备 注 | 图片_w | 整数型 | | | 图片_h | 整数型 | | | 图片 | 多维矩阵类 | | | 斑点 | 多维矩阵类 | | | 输出s | 多维矩阵类 | | 0 | 类Ids | 整数型 | | 0 | 置信度s | 小数型 | | 0 | 预测框s | 矩形2i类 | | 0 | 掩码Ids | 整数型 | | 0 | 数_类 | 整数型 | | | 分数 | 多维矩阵类 | | | 类Id坐标 | 点2i类 | | | 得分 | 双精度小数型 | | | i | 整数型 | | | loc | 小数型指针类 | | | pb | 小数型指针类 | | | pb_cx | 小数型 | | | pb_cy | 小数型 | | | pb_w | 小数型 | | | pb_h | 小数型 | | | 预测框_cx | 小数型 | | | 预测框_cy | 小数型 | | | 预测框_w | 小数型 | | | 预测框x_h | 小数型 | | | 对象_x1 | 小数型 | | | 对象_y1 | 小数型 | | | 对象_x2 | 小数型 | | | 对象_y2 | 小数型 | | | 指数 | 整数型 | | 0 | idx | 整数型 | | | box | 矩形2i类 | | | xmax | 整数型 | | | ymax | 整数型 | | | 标题 | 文本型 | | | 标签尺寸 | 尺寸2i类 | | | ymin | 整数型 | | | 蒙版 | 多维矩阵类 | | | 蒙版2 | 多维矩阵类 | | | 通道l | 整数型 | | | 面积 | 整数型 | | | 系数指针 | 小数型指针类 | | | pm | 小数型指针类 | | | 掩码图指针 | 小数型指针类 | | | j | 整数型 | | | p | 整数型 | | | y | 整数型 | | | 蒙版指针 | 小数型指针类 | | | 蒙版数据指针 | 字节型指针类 | | | x | 整数型 | | |
图片_w = 输入图片. 列数 ()图片_h = 输入图片. 行数 ()视觉_调整尺寸 (输入图片, 图片, 尺寸2i (目标_尺寸, 目标_尺寸 ), #插值_双线性二次, 0, 1 )视觉_颜色空间转换 (图片, 图片, #颜色_BGR转RGB, 0 )归一化 (图片 )斑点 = 视觉_图像前景目标 (图片, 1, , , 假, 假, 5 )DNN网络. 设置输入 (斑点, “”, 1, )DNN网
|
评分
-
查看全部评分
|