开启辅助访问 切换到宽版

精易论坛

 找回密码
 注册

QQ登录

只需一步,快速开始

用微信号发送消息登录论坛

新人指南 邀请好友注册 - 我关注人的新帖 教你赚取精币 - 每日签到


求职/招聘- 论坛接单- 开发者大厅

论坛版规 总版规 - 建议/投诉 - 应聘版主 - 精华帖总集 积分说明 - 禁言标准 - 有奖举报

查看: 622|回复: 2
收起左侧

[易语言] python转易语言

[复制链接]
结帖率:84% (107/127)
发表于 2024-2-19 20:40:12 | 显示全部楼层 |阅读模式   广东省肇庆市
30精币
[Python] 纯文本查看 复制代码
import time
import random
import struct
import io


MOD = 1 << 64


def rotate_left(x: int, k: int) -> int:
    bin_str = bin(x)[2:].rjust(64, "0")
    return int(bin_str[k:] + bin_str[:k], base=2)


def gen_uuid_infoc() -> str:
    t = int(time.time() * 1000) % 100000
    mp = list("123456789ABCDEF") + ["10"]
    pck = [8, 4, 4, 4, 12]
    gen_part = lambda x: "".join([random.choice(mp) for _ in range(x)])
    return "-".join([gen_part(l) for l in pck]) + str(t).ljust(5, "0") + "infoc"


def gen_buvid_fp(key: str, seed: int):
    source = io.BytesIO(bytes(key, "ascii"))
    m = murmur3_x64_128(source, seed)
    return "{}{}".format(
        hex(m & (MOD - 1))[2:], hex(m >> 64)[2:]
    )


def murmur3_x64_128(source: io.BufferedIOBase, seed: int) -> str:
    C1 = 0x87C3_7B91_1142_53D5
    C2 = 0x4CF5_AD43_2745_937F
    C3 = 0x52DC_E729
    C4 = 0x3849_5AB5
    R1, R2, R3, M = 27, 31, 33, 5
    h1, h2 = seed, seed
    processed = 0
    while 1:
        read = source.read(16)
        processed += len(read)
        if len(read) == 16:
            k1 = struct.unpack("<q", read[:8])[0]
            k2 = struct.unpack("<q", read[8:])[0]
            h1 ^= (rotate_left(k1 * C1 % MOD, R2) * C2 % MOD)
            h1 = ((rotate_left(h1, R1) + h2) * M + C3) % MOD
            h2 ^= rotate_left(k2 * C2 % MOD, R3) * C1 % MOD
            h2 = ((rotate_left(h2, R2) + h1) * M + C4) % MOD
        elif len(read) == 0:
            h1 ^= processed
            h2 ^= processed
            h1 = (h1 + h2) % MOD
            h2 = (h2 + h1) % MOD
            h1 = fmix64(h1)
            h2 = fmix64(h2)
            h1 = (h1 + h2) % MOD
            h2 = (h2 + h1) % MOD
            return (h2 << 64) | h1
        else:
            k1 = 0
            k2 = 0
            if len(read) >= 15:
                k2 ^= int(read[14]) << 48
            if len(read) >= 14:
                k2 ^= int(read[13]) << 40
            if len(read) >= 13:
                k2 ^= int(read[12]) << 32
            if len(read) >= 12:
                k2 ^= int(read[11]) << 24
            if len(read) >= 11:
                k2 ^= int(read[10]) << 16
            if len(read) >= 10:
                k2 ^= int(read[9]) << 8
            if len(read) >= 9:
                k2 ^= int(read[8])
                k2 = rotate_left(k2 * C2 % MOD, R3) * C1 % MOD
                h2 ^= k2
            if len(read) >= 8:
                k1 ^= int(read[7]) << 56
            if len(read) >= 7:
                k1 ^= int(read[6]) << 48
            if len(read) >= 6:
                k1 ^= int(read[5]) << 40
            if len(read) >= 5:
                k1 ^= int(read[4]) << 32
            if len(read) >= 4:
                k1 ^= int(read[3]) << 24
            if len(read) >= 3:
                k1 ^= int(read[2]) << 16
            if len(read) >= 2:
                k1 ^= int(read[1]) << 8
            if len(read) >= 1:
                k1 ^= int(read[0])
            k1 = rotate_left(k1 * C1 % MOD, R2) * C2 % MOD
            h1 ^= k1


def fmix64(k: int) -> int:
    C1 = 0xFF51_AFD7_ED55_8CCD
    C2 = 0xC4CE_B9FE_1A85_EC53
    R = 33
    tmp = k
    tmp ^= tmp >> R
    tmp = tmp * C1 % MOD
    tmp ^= tmp >> R
    tmp = tmp * C2 % MOD
    tmp ^= tmp >> R
    return tmp


if __name__ == '__main__':
    # Test gen_uuid_infoc
    print("gen_uuid_infoc():", gen_uuid_infoc())
    # Test gen_buvid_fp
    FP = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36falsezh-CN248162560,10802467,1089480Asia/Hong_Kongtruetruetruefalsefalsenot availableWin32PDF Viewer,Portable Document Format,application/pdf,pdf,text/pdf,pdf,Chrome PDF Viewer,Portable Document Format,application/pdf,pdf,text/pdf,pdf,Chromium PDF Viewer,Portable Document Format,application/pdf,pdf,text/pdf,pdf,Microsoft Edge PDF Viewer,Portable Document Format,application/pdf,pdf,text/pdf,pdf,WebKit built-in PDF,Portable Document Format,application/pdf,pdf,text/pdf,pdfcanvas winding:yes,canvas fp::image/png;base64,iVBORw0KGgoAAAANSUhEUgAAASwAAACWCAYAAABkW7XSAAAAAXNSR0IArs4c6QAADWhJREFUeF7tnV+oJEcVh6tm7n3wIQ+i+CAE8UFEfMqDiohsX0Q0oKAoGARRQUGRoC8LCsqdRVEfRH0IKijqg6hoyAZXcpeoO3NZyYoLuWqiC4m4aDCRRFwxIYtGZ7w1f3ZmJ7dnqqurus+p/hYCgXRVn/r9zn451XO62hr+oAAKoIASBaySOAkTBVAABQzAIglQAAXUKACw1FhFoCiAAgCLHEABFFCjAMBSYxWBogAKACxyAAVQQI0CAEuNVQSKAigAsMgBFEABNQoALDVWESgKoADAIgdQAAXUKACw1FhFoCiAAgCLHEABFFCjAMBSYxWBogAKACxyAAVQQI0CAEuNVQSKAigAsMgBFEABNQoALDVWESgKoADAIgdQAAXUKACw1FhFoCiAAgCLHIiuwGRiCmPMKWvNmeiTM2GnFQBYnbY/zeLHEzO0ZgqtAdBKo3FXZwVYXXU+4brHEzNZSaw9a80o4e2YukMKAKwOmd3EUp+bmKJvphXW6h+g1YT4HbgHwOqAyU0u8b8TM+wZU6wl1shas9dkHNwrTwUAVp6+trIqV11ZMwXWSd+PA1qtuJLXTQFWXn62uprn5g/bS4DlYuMhfKsO6b85wNLvoYgVXJ+YYmf+7GoDsICWCLf0BgGw9HonKvL/zKsrl1BbgAW0RDmnKxiApcsvsdH+e2ImC1B5AAtoiXVSdmAAS7Y/KqJz28HeysN2T2ABLRXuygoSYMnyQ2U01+etDBUrrMVa6dFS6Xo7QQOsdnTP5q5Pzx+2O1gFAstpAbSyyYi0CwFYafXNfvZnV1oZagDLHL9zSC5mny31F0iS1NewszO46mrxGk7NCstpSGNpZzPJf+EAy18rrlxT4JmV13AiAAtokWFbFQBYWyXigjIFnllrZaizJVy5B93wpFypAgCL5AhS4NrEFLtrrQyRgOXiAVpBruQ/CGDl73GSFf7rhFaGiMACWklc0z8pwNLvYeMrcNWVe9i+/twqMrCAVuPOyr8hwJLvkbgI/7lSXa1CKgGwgJY499sNCGC1q7+6u7vqanHmVQMV1kIfGkvVZUqagAFWGl2znfXaWqNoAxXWVEsaS7NNqUoLA1iV5OLia/MPTCyqq6aARWMpuTf9HxcyoICvAk+tHdLX4JZwESLd8L5mZXodwMrU2BTL+sfaIX0tAIuH8CmMVTQnwFJkVpuhuupq/cyrloAFtNpMhJbvDbBaNkDL7Z8qaRRt8BnWulR0w2tJnohxAqyIYuY61RMlZ161WGEtpAZauSZdyboAVscMD1nukyVnXgkAFtvDEEMVjwFYis1rKvQn11oZFl/GEQIsJwONpU0lQ8v3AVgtGyD99m47WHZInyBgAS3piRQpPoAVSchcp/nbhkP6hAGLbvhck3BlXQCrAyaHLvGxLWdeSQMW3fChTusZB7D0eNV4pI9vOfNKILCcRnTDN54pzd0QYDWntao7uepq25lXQoHFL4eqMq1asACrml6dudpVV8fViutuv+l7g+uNoi02jm7zgh6tbQop/O8AS6FpTYT81w2tDALbGsokAVpNJEuD9wBYDYqt5VZuO+jeG1wFU9m/C66wFnIDLS2J5xEnwPIQqWuXPLallUFRhQW0MktegJWZoXWXc3XlvcFMKqyFJHTD100OAeMBlgATJIXwl5X3BjMDFo2lkhItMBaAFShcjsNcdbU486rs2ZSiXwlPsogeLeWJC7CUGxgz/Ksen+9SDiwnF9CKmTQNzwWwGhZc8u2uTsxk28clMgCWs4BfDiUn4obYAJZS42KH/ejaIX2ZbglXZQNasZOogfkAVgMia7jFnzy/N5hJhbWwBGhpSM6VGAGWMsNShOuqq/UzrzpQYQGtFMmUeE6AlVhgDdP/8YRG0Q4Bi2daGpJ0HiPAUmRWilCvlJx51TFgOWlpLE2RYJHnBFiRBdU23SMVP9+V2TOsdbuAlvAEBljCDUod3iMrrQw+7whmDiy64VMnXM35AVZNATUPd9vBskP6OrglXFhJY6ngpAZYgs1JHZrbDpYd0tdhYPEQPnXi1ZgfYNUQT/NQV11tOvOq48ACWkKTG2AJNSZ1WFfGZtibmKLqwXy5P8Na031g++ZMai+Y318BgOWvVTZXPnTdFDt9M9xURVFhze22ZmB3gZaU5AdYUpxoMI4/PDs9/nj6gQkqLA/hHbReALQ8lEp+CcBKLrG8G/z+6eWpDADL2589e4sZeV/NhUkUAFhJZJU76UPXTNGzs+0gFVZFnyZmz74QaFVULerlACuqnPIne/jvy+0gwKrul33xdBfNn5YUQPyWhG/jtkdPmGK3V+/zXR37lfD5Nlkzsi8xe234xz1nz1z50xEFfvf45lYGXs3xTAQHrZcCLU+1ol4GsKLKKXeyo6um6G9pZQBYFfxzvxzeyi+HFRSLcinAiiKj/El++2ezb8dmULe/qvNbwlWre2ZgXwa0msx+gNWk2i3e6zePbm9loMIKMmhgXwG0gpQLGASwAkTTNuToiimsRysDwAp01m0PXwm0AtWrNAxgVZJL58VHD/u1MgCsGv46aL0aaNVQ0GsowPKSSe9Fl49MsePZygCwavo8Nnv2NhpLa6q4cTjASqmugLkffHBWXZW9gsOrOZFN+p/Zs68BWpFVvTEdwEqlrIB5L18yRa9CKwMVVhTTRva19GhFUfKESQBWKmUFzHv5ktk/bkPwbmUAWNFMG9nXA61oaq5MBLBSqCpkzssXq7UyAKyoxg3sG3kIH1XR+XFIsedkPgEKXBqaYqdiKwPAimyc++XwFNCKqSoVVkw1Bc316wtmaGfntm88RoaH7slNG9g3Aa1YKgOsWEoKmufSgSl6veWZV76v41BhJTNxYN8CtGKoC7BiqChsjl/dd3OjKMASYJDbHt4OtOo6AbDqKihs/MWzptjt33zmFcASYpLr0XonPVp13ABYddQTOPbSWbN/bOogZHsXMqYMhiRWaXIArRp/b8irGuJJHPrA3bNWhhD4hIwBWNWzwL6bgzOrqzYbAbBClRM47uIPTNGftzKEwCdkDMAKSoSRvYPG0hDlAFaIakLH/PL7syOQqbCEGrQaljtm+b1Aq6pTAKuqYkKvv/gdU9iVVoaQailkDBVWrYQY2Pfzy2EVBQFWFbUEX3vx2+VnXvEroWDjXLvDB4GWr0MAy1cpwdcNv2mKHVP++S6AJdg8M21zOGM/TLuDj0sAy0cl4dccfn12KkPd12zYEjZi9GB+l0P7USBVVXGAVVUxgdcf3vX8VoYQ+ISM4RnWloSwZgaosTm0dwKoun99AFZdBVseP/yKKXontDKEwCdkDMC6KQFGxs6gZD/Oc6kUfzUAVgpVG5xz+OWTWxlC4BMypuPAWlZPp6memkh7gNWEyonuMfyCKcz8CORND9Z56B7FgGX1dJrqKYqiAZMArADRpAy58Hm/z3cBrCDHloD6FIAKUjDBIICVQNQmpvzZZ03R39DKELK9CxmT0ZZw+evdZ9jeNZHDIfcAWCGqCRjzizNm347LWxlC4BMyRimwRqY3fzi+T/UkIJ29QwBY3lLJuvDnn56eKOr1vUG2hFM4uX8O7eeonmRlcrVoAFY1vURcffBJU+xuaWUIqZZCxoissCbz3icHqC8CKBFJGykIgBVJyCanuf/0rLryrZx8r1MKrJGZzLd3X2J712QetnEvgNWG6jXuefAJU/RLTmXoxKs5Dk6uOdN1jn+V6qlGKqkcCrCU2Xb+TjPs2Wqf71JeYS2bM+8CUMrSNXq4ACu6pGknPP+x5decfUHke52ALeFye/c1tndpM0nn7ABLkW8HH5l9YGLxcVRfEPle1wKwlr/efYPqSVEqthYqwGpN+uo3PvhQ2PcGBQFr2Zz5LQBVPQMYAbCU5MC5D5hix4Z9b7AlYC23d99le6ckzcSHCbDEWzQL8L73zaqrmNu2GC9M35hjMtuquubM3e9RPSlJK3VhAiwFlp27wxS9eSuDFGD158/SxmNzeMsPAZSCNMoiRIClwMZz7zm5UdR3q+d73QYYjuzEjNw8L/oR2zsFKZNtiABLgbXn3rVsZWikwppv78Y9c3jr3VRPClKkMyECLOFWn3uH2T8O8UYrQwpgLbZ37vnTy+8FUMJTotPhASzh9v/kbfW/N7i2JRwdP7yfbu9e9VO2d8LtJ7w1BQCW4JQ4+1ZT9NdaGSpXWCu/3t12nupJsN2E5qEAwPIQqa1L7n3z7L1B75eaJ2bUt7Pq6XX3Uz215Rv3TacAwEqnba2Zf1yYYveEVoabKqw5oNyNTl0AULUEZ7AKBQCWUJvuOXVCK4OdPXwfG3N4+4jtnVDrCCuhAgArobh1pr7nDWbYn/c+vf0Bqqc6WjI2HwUAVj5eshIUyF4BgJW9xSwQBfJRAGDl4yUrQYHsFQBY2VvMAlEgHwUAVj5eshIUyF4BgJW9xSwQBfJRAGDl4yUrQYHsFQBY2VvMAlEgHwUAVj5eshIUyF4BgJW9xSwQBfJRAGDl4yUrQYHsFQBY2VvMAlEgHwUAVj5eshIUyF4BgJW9xSwQBfJRAGDl4yUrQYHsFQBY2VvMAlEgHwUAVj5eshIUyF6B/wOyPPqmnM8DGQAAAABJRU5ErkJggg==,extensions:ANGLE_instanced_arrays;EXT_blend_minmax;EXT_color_buffer_half_float;EXT_disjoint_timer_query;EXT_float_blend;EXT_frag_depth;EXT_shader_texture_lod;EXT_texture_compression_bptc;EXT_texture_compression_rgtc;EXT_texture_filter_anisotropic;EXT_sRGB;KHR_parallel_shader_compile;OES_element_index_uint;OES_fbo_render_mipmap;OES_standard_derivatives;OES_texture_float;OES_texture_float_linear;OES_texture_half_float;OES_texture_half_float_linear;OES_vertex_array_object;WEBGL_color_buffer_float;WEBGL_compressed_texture_s3tc;WEBGL_compressed_texture_s3tc_srgb;WEBGL_debug_renderer_info;WEBGL_debug_shaders;WEBGL_depth_texture;WEBGL_draw_buffers;WEBGL_lose_context;WEBGL_multi_draw,webgl aliased line width range:[1, 1],webgl aliased point size range:[1, 1024],webgl alpha bits:8,webgl antialiasing:yes,webgl blue bits:8,webgl depth bits:24,webgl green bits:8,webgl max anisotropy:16,webgl max combined texture image units:32,webgl max cube map texture size:16384,webgl max fragment uniform vectors:1024,webgl max render buffer size:16384,webgl max texture image units:16,webgl max texture size:16384,webgl max varying vectors:30,webgl max vertex attribs:16,webgl max vertex texture image units:16,webgl max vertex uniform vectors:4095,webgl max viewport dims:[32767, 32767],webgl red bits:8,webgl renderer:WebKit WebGL,webgl shading language version:WebGL GLSL ES 1.0 (OpenGL ES GLSL ES 1.0 Chromium),webgl stencil bits:0,webgl vendor:WebKit,webgl version:WebGL 1.0 (OpenGL ES 2.0 Chromium),webgl unmasked vendor:Google Inc. (NVIDIA) #itsl7pRpEh,webgl unmasked renderer:ANGLE (NVIDIA, NVIDIA GeForce RTX 3060 Laptop GPU (0x00002560) Direct3D11 vs_5_0 ps_5_0, D3D11) #itsl7pRpEh,webgl vertex shader high float precision:23,webgl vertex shader high float precision rangeMin:127,webgl vertex shader high float precision rangeMax:127,webgl vertex shader medium float precision:23,webgl vertex shader medium float precision rangeMin:127,webgl vertex shader medium float precision rangeMax:127,webgl vertex shader low float precision:23,webgl vertex shader low float precision rangeMin:127,webgl vertex shader low float precision rangeMax:127,webgl fragment shader high float precision:23,webgl fragment shader high float precision rangeMin:127,webgl fragment shader high float precision rangeMax:127,webgl fragment shader medium float precision:23,webgl fragment shader medium float precision rangeMin:127,webgl fragment shader medium float precision rangeMax:127,webgl fragment shader low float precision:23,webgl fragment shader low float precision rangeMin:127,webgl fragment shader low float precision rangeMax:127,webgl vertex shader high int precision:0,webgl vertex shader high int precision rangeMin:31,webgl vertex shader high int precision rangeMax:30,webgl vertex shader medium int precision:0,webgl vertex shader medium int precision rangeMin:31,webgl vertex shader medium int precision rangeMax:30,webgl vertex shader low int precision:0,webgl vertex shader low int precision rangeMin:31,webgl vertex shader low int precision rangeMax:30,webgl fragment shader high int precision:0,webgl fragment shader high int precision rangeMin:31,webgl fragment shader high int precision rangeMax:30,webgl fragment shader medium int precision:0,webgl fragment shader medium int precision rangeMin:31,webgl fragment shader medium int precision rangeMax:30,webgl fragment shader low int precision:0,webgl fragment shader low int precision rangeMin:31,webgl fragment shader low int precision rangeMax:30Google Inc. (NVIDIA) #itsl7pRpEh~ANGLE (NVIDIA, NVIDIA GeForce RTX 3060 Laptop GPU (0x00002560) Direct3D11 vs_5_0 ps_5_0, D3D11) #itsl7pRpEhfalsetruefalsefalse0,false,falseArial,Arial Black,Arial Narrow,Book Antiqua,Bookman Old Style,Calibri,Cambria,Cambria Math,Century,Century Gothic,Century Schoolbook,Comic Sans MS,Consolas,Courier,Courier New,Georgia,Helvetica,Helvetica Neue,Impact,Lucida Bright,Lucida Calligraphy,Lucida Console,Lucida Fax,Lucida Handwriting,Lucida Sans,Lucida Sans Typewriter,Lucida Sans Unicode,Microsoft Sans Serif,Monotype Corsiva,MS Gothic,MS PGothic,MS Reference Sans Serif,MS Sans Serif,MS Serif,Palatino Linotype,Segoe Print,Segoe Script,Segoe UI,Segoe UI Light,Segoe UI Semibold,Segoe UI Symbol,Tahoma,Times,Times New Roman,Trebuchet MS,Verdana,Wingdings,Wingdings 2,Wingdings 3124.04347527516074"
    assert gen_buvid_fp(FP, 31) == "e01abd0e12f9ee456fe52d2efd6803bb"
    assert gen_buvid_fp("", 31) == "24700f9f1986800ab4fcc880530dd0ed"
    print("gen_buvid_fp() No Problem. ")


上面这个python代码怎么转成易语言 有大佬懂吗


回答提醒:如果本帖被关闭无法回复,您有更好的答案帮助楼主解决,请发表至 源码区 可获得加分喔。
友情提醒:本版被采纳的主题可在 申请荣誉值 页面申请荣誉值,获得 1点 荣誉值,荣誉值可兑换荣誉会员、终身vip用户组。
快捷通道:申请荣誉值无答案申请取消悬赏投诉有答案未采纳为最佳
发表于 2024-2-19 22:21:44 | 显示全部楼层   黑龙江省哈尔滨市
找个gpt 转成js调用吧
回复

使用道具 举报

结帖率:100% (10/10)
发表于 2024-2-29 21:59:18 | 显示全部楼层   山西省太原市
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则 致发广告者

发布主题 收藏帖子 返回列表

sitemap| 易语言源码| 易语言教程| 易语言论坛| 易语言模块| 手机版| 广告投放| 精易论坛
拒绝任何人以任何形式在本论坛发表与中华人民共和国法律相抵触的言论,本站内容均为会员发表,并不代表精易立场!
论坛帖子内容仅用于技术交流学习和研究的目的,严禁用于非法目的,否则造成一切后果自负!如帖子内容侵害到你的权益,请联系我们!
防范网络诈骗,远离网络犯罪 违法和不良信息举报电话0663-3422125,QQ: 793400750,邮箱:wp@125.la
网站简介:精易论坛成立于2009年,是一个程序设计学习交流技术论坛,隶属于揭阳市揭东区精易科技有限公司所有。
Powered by Discuz! X3.4 揭阳市揭东区精易科技有限公司 ( 粤ICP备12094385号-1) 粤公网安备 44522102000125 增值电信业务经营许可证 粤B2-20192173

快速回复 返回顶部 返回列表